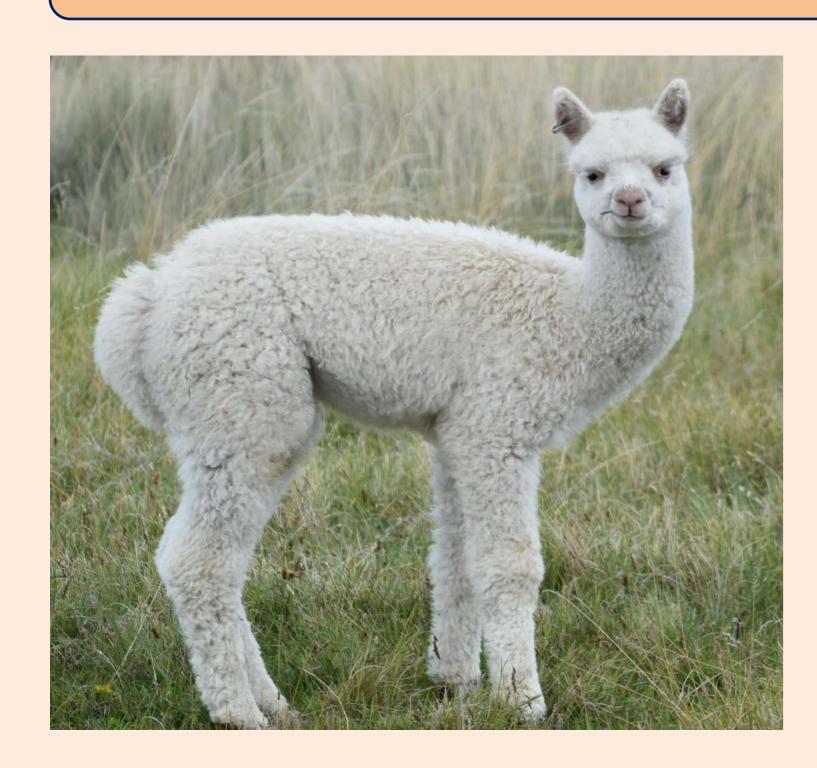


EAAP + WAAP + Interbull Congress 2023 Lyon, France, August 26th / September 1st, 2023 Session 82, Abstract No 41503



Genetic parameters of medullation types in alpaca fiber

A. Cruz^{1,2}; Y. Murillo¹; A. Burgos²; A. Yucra²; M. Quispe³; E. Quispe^{1,4}; J.P. Gutiérrez⁵

¹Universidad Nacional Agraria La Molina, Lima, Peru. ²Estación Científica Pacomarca, Inca Tops S.A., Arequipa, Peru. ³Maxcorp Technologies SAC, Lima, Peru. ⁴Natural Fiber´s Tech S.A. Lima, Peru. ⁵Departamento de Producción Animal, Universidad Complutense de Madrid, Madrid, Spain.

INTRODUCTION

Alpaca fiber industry competes with other noble fibers in an international market. Improving the fiber quality is mandatory with this aim, referring to reduce the incidence of objectionable fibers, such as coarse and medullated fibers.

MATERIAL

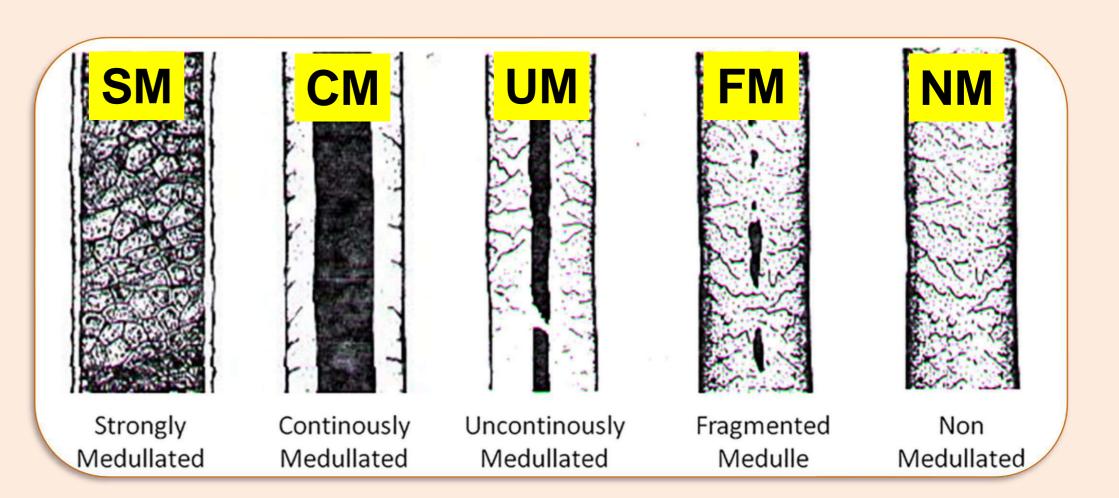
Number of records: 3 149 from 1 626 animals with 14 457 in pedigree Global mean of fiber diameter =20.78µm

Mean of the Percentage of medullation and fiber diameter for medullation types

Traits	NM	FM	UM	CM	SM	
Medullation percentage (%)	63.18	18.16	7.86	10.46	0.34	
Fiber Diameter (µm)	18.88	22.15	24.57	28.10	45.96	

METHODS

y = Xb + Zu + Wp + e


b = Fixed effects: color (white *vs* cream), sex, year (3 levels), age as linear and quadratic covariate

u = Additive genetic effect

p = permanent environmental effect

OBJECTIVE

Estimate the genetic parameters of medullation types and the relationship with their respective diameters in alpaca fiber

FD Fiber diameter

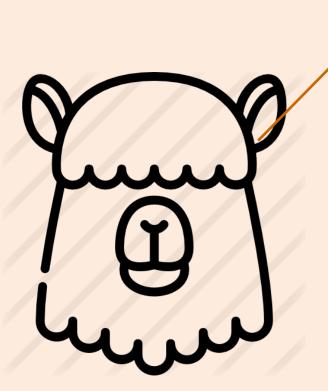
_FD** Fiber diameter of the ** medulla category

Compositional data methodology:

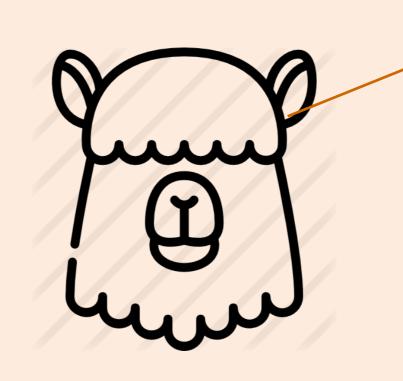
Medulla types in percentage were transformed to the centred log-ratio (CLR) (Aitchison, 1986):

$$CLR(x_i) = ln \left(\frac{X_i}{\sqrt[n]{x_1 \cdot x_2 \cdot \cdots \cdot x_n}} \right)$$

RESULTS


Heritabilities (in diagonal), and genetic correlations (above diagonal), for medullation types in alpacas. All standard errors were lower than 0.03.

	NM	FM	UM	CM	SM
NM	0.25	0.23	-0.29	-0.65	-0.57
FM		0.18	0.60	-0.45	-0.66
UM			0.10	0.15	-0.51
CM				0.20	0.15
SM					0.11


Heritabilities (in diagonal), and genetic correlations (above diagonal), for fiber diameter according to the medullation categories in alpacas. All standard errors were lower than 0.04.

VCE 6.0

	FD	NM_FD	FM_FD	UM_FD	CM_FD	SM_FD
FD	0.29	0.81	0.41	0.22	0.04	0.06
NM_FD		0.27	0.81	0.66	0.55	0.06
FM_FD			0.35	0.94	0.86	-0.28
UM_FD				0.30	0.97	-0.21
CM_FD					0.25	-0.10
SM_FD						0.10

Heritabilities moderate for NM, FD, NM_FD, FM_FD and UM_FD.
Heritabilities low for SM and SM FD

Relevant genetic correlation between NM and FM with CM and SM, the objectionable fibers.

CONCLUSION

The reduction of FD and increase of NM and FM fiber would perform optimal results in removing the coarsest fibers and consequently the itching.